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ABSTRACT

A generalized critical point
is characterized by the vanishing
of certain linear relationships.

- In particular, the dynamics near
such a point are completely non-
linear._c¥n this paper ,~we, analyzes
fluctuations“at such points of

- spatially homogeneous systems.
\A\~WE'uisousc thermodynamic critical
v e 0’2'-if-J points,as a special case; but the

main emphasis is on stochastic
kinetic equations. We-shew—that—
fluctuations at a critical point
cannot be characterized by a
Gaussian density, but more

‘ sophisticated dens%&}es yield
reasonable results. , Qup theory

E is applied to the critical

harmonic oscillator.<s\\\‘\\\N
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UNIFORM TREATMENT OF FLUCTUATIONS AT CRITICAL POINTS

SECTION 1. INTRODUCTION

A generalized critical point can be characterized by the
vanishing of certain linear relationships; Such a point may be
thermodynamic or kinetic. For example, at the liquid-vapor tran-

sition temperature, it is well known that

oP 2
a—‘; e 0 . (lol)

Te

In general, if ¢(x) is some generalized potential and ¢(0) = 0
then the Onsager theory of non-equilibrium processes indicates that

perturbations from x = 0 evolve according to

. (1.2)

In the vicinity of equilibrium, xeq’ since ¢'(xeq) =0,

2
" (x_ )(x - x_ )
sx) =0 * °q72 - e (1.3}

Defining 1/x=0¢" (xeq) to be the recriprocal of a "susceptibility"

we find

= . o i 2
x x (x xeq) + 0((x xeq) ) (1.4)




At a generalized critical point, ¢" = 0. Hence the dynamics in the
vicinity ¥f a critical point are highly nonlinear. Namely, one must
use extra\terms in the Taylor expansion (1.3), and obtain non-
linear dynamics at the critical point.

In this paper, we consider thermodynamic and kinetic critical
points. As the term is usually used, "critical point" refers to a
point in parameter space that is characterized by i) a slowing

down of the dynamics and ii) long range spatial correlations. 1In

this paper, we do not consider the long range order, but restrict
the prqblem to spatially homogeneous systems, so that only critical
slowing'down will be evidenced. These equilibria (thermodynamic
case) or steady states (kinetic case) are characterized by non-
linear dynamics. This point is given much emphasis in the paper.
Due to the nonliﬁéaxldynamics the analysis of systems near critical
points is quite diffiéhlt. Some analysis has been done, by Kubo
et. al.(l) and Nitzan et. al.(2). 1In the first paper, two types

of critical steady states were defined for one dimensional systems.
We briefly review these. Let x=0 be the steady state. The steady

state is of the marginal type(l) if perturbations from x=0 behave as

X v Ex . (1.5)




The origin is a critical type steady state(l) if perturbations

from x=0 behave as

x ot . _ (1.6)

Recently, the terminology of Kubo et. al. has been generalized to
multidimensional systems(3). The paper of Nitzan et. al. (2) is
contained as a special case of this paper and the accompanying
one (4).

In this paper, we will analyze fluctuations at critical
points. Often one reads that fluctuations "become unbounded" or
"grow anomalously" at critical points. These statements are meant
in the following sense: if one tries to describe fluctuations at
a critical point by a Gaussian approximation, then the second
moment <x2> is infinite. We will show that the Gaussian descrip-
tion of fluctuations implicitly assumes linear dynamics. Since
critical point dynamics are nonlinear, one should not expect the
Gaussian approximation to be valid. Hence, the anomaly is not in
the physics, but in the improper use of mathematical approxima-
tions. We show that although the Gaussian approximation is not
valid, more complicated densities are appropriate. The technique
to demonstrate this will utilize formal asymptotic methods.

Our results are analogous to problems in optics (at a caustic)

and wave mechanics (at a classical turning point). In those cases,

the geometrical optics and WKB Qolutioné break down, yielding
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infinite amplitudes. In reality, the intensity of light at a
caustic is not infinite, but is large(5). At a caustic, geo-
metrical optics must be replaced by Airy or Pearcey integrals(5,6).
Similar analyses hold at the classical turning point (e.g.(7),(8)).
In §2, we give the uniform treatment of fluctuations at the
thermodynamic critical point of a homogeneous system. As an
example, we calculate volume fluctuations of van der Waals gas at
the critical point. Our theory is equivalent to the classical
theory of phase transitions(8). The main focus of this paper, how-
ever, is kinetic critical points, which have a much richer dynamical
behavior. In §3, we introduce the stochastic kinetic equation and
diffusion approximation. The theory given here is a variation
of the mode-mode coupling theory(l0). We discuss a possible resolu-
tion of the present controversy regarding a "proper" expansion of
the Master Equation to obtain a Fokker-Planck equation(ll). A small
parameter arises in the derivation of the diffusion approximation;
it characterizes the intensity of fluctuations. The fluctuaﬁions
are characterized by a density that satisfies the forward or Fokker-
Planck equation. In this paper, techniques for the construction of
solutions of the forward equation are given when the underlying
deterministic dynamics exhibit critical behavoir. 1In §4 we de-
rive solutions of the one dimensional time invariant Fokker-Planck
equation. We obtain an exact’resu;t, which is then analyzed

by ésymptotic methods. We obtain a Gaussian density at a
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non-critical steady state, an Airy density at a marginal type
steady state, and a Pearcey density at a critical type steady
¢.ate. In §5, these densities are used in a general ansatz ("ray
method" (12)) to provide asymptotic solutions of the time dependent
multidimensional Fokker-Planck equation. We construct densities in
which susceptibilities (i.e. first derivatives) at the critical
point are large, but finite. The same result applies to variances.
In §6, we show how our results can be used to construct time-
dependent correlation functions. 1In §7, we discuss an example of
the critical harmonic oscillator(13) and show how the correlation
function is constructed.

Antecedents to this work are found in Kubo et. al.(l),
Kitahara(l4), Keizer(l15) and Nitzan et. al.(2). The present work

generalizes the results of the above papers.
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SECTION 2. UNIFORM THERMODYNAMIC THEORY

In this section, we derive the uniform theory for thermo-
dynamic critical points of spatially homogeneous systems. The
ideas which arise here are very similar to the more complex ones

that arise in the kinetic case.

2.1. GENERAL THEORY

The thermodynamic theory proceeds from the Einstein
fluctuation-entropy formula. We assume that the entropy of the
system can be characterized by a parameter x. The equilibrium

entropy is ., Thas S(xo), Let

v(x)dx = Pr {system reaches a state in which
x€(x,x+dx)} : (2.1)
Then (9)
S(x) - S, AS
v(x)dx = c exp % dx=c exp [f—] ax, (2.2)

where ¢ is a normalizing constant. As is usually done, we have
eliminated the time variable from the discussion of thermodynamic
problems (16). This elimination has certain conceptual drawbacks
when one tries to describe the time evolution of a system. How-
ever, we shall follow standard notation here. We also follow the
standard procedure of dividing the univgrse into the sub-system

of interest, characterized by a variable y and certain intensive

6




parameters (al, Sinca an) = o , and an external reservoir which is
assumed to remain in thermodynamic equilibrium(17, page 274). Then

viy)dy = & exp [‘—A{’—,I(.Yl] dy, | (2.3)

where AW(y) is the work done on the subsystem by an external source.
? y Let ¢(y,a) denote the potential of the system, so that (with Y=Y,

denoting equilibrium) :

AW(y) = ¢(y,a) =~ Q(yo,a). (2.4)
P Then
:

v(y)dy = c exp [:2%¥LEL] dy. (2.5)

Usually (9,16,17) &¢(y,a) is expanded in a Taylor series, keeping

terms of second order

¢(Yra) - d’(Yo:a) < ¢'(Y01a) (Y"YO)

(y 10-)
. + 0" ——g—— (y-yo)2 + cue (2.6)

At equilibrium ¢'(y0,a) = 0 and @"(yo,a) > 0. Thus we obtain

viy)dy * exp [ﬁ}.}: 0" (yo.ax(y-yo)z] dy. (2.7)
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Equation (2.7) gives a locally Gaussian denrity with variance

7.
" (yO,Ot)

- (2.8)
The Onsager-Machlup theory of irreversible processes(18) proceeds
from this point.

Suppose, however, that there is a value a=a such that
] = " = [}
¢ (yo,am) ® (yo,am) 0 ® (yo,am) # 0. (2.9)

Such a point might correspond to a second order phase transi-
tion(2,9). A third term is needed in the Taylor expansion (2.6).

For o near o instead of (2.7), one obtains

i " (Y, ,rt)
v(y)dy ~ exp [}-(-% % —20—— (y--yo)2
¢!ll(y0'a) 3
+ St (y-yo) i dy. (2.10)

A simple change of variables converts (2.10) to

v(y)dy v exp[,{% {z(y)3 - dz(y) + e}] dz (y) . (2.11)

where z(y) is a regular function of y and a(a) is a regular func-

tion of a with the property that a(um) = 0. A density of the form

(2.11) is called an Airy density.




At thermodynamic critical points, if 0"(yo,u) vanishes, then
usually ¢"'(y0,u) also will vanish. This can be shown by using
free energy arguments(l7). Such will not be the case for kinetic
equations, however.

It is also possible that at a different value of a,a=ae .

2" (ygrag) = ' ' (ygan) = 05 o)y La ) # 0. (2.12)

Such a point corresponds to a first order phase transition(2). We
take another term in the Taylor expansion (2.6) and obtain, for

0 near o _:

c
2 g eyt ety L) (vmy )
v(y)dy v exp o 33 i 6
" 2
¢ (Yola) (Y"YO)
+ > 2 dy. (2.13)

Equation (2.13) can be put into the form

g 4 (a)z(y)?
v(y)dy ~ exp [ E% ; Z(i) + L > + az(a)f] dz(y) .

(2.14)

In (2.14), z(y) is a regular function of y; &1,3 are regular func-

2
tions of o and vanish at a=a . We call the density (2.14) a

Pearcey density.
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Equations (2.10,14) represent a formal extension of
Onsager's theory to critical point phenomena. In light of (1.4),
we are lead to totally nonlinear dynamics when a=a, or a=a . Our
result is, of course, purely ‘formal and is applicable to smail
deviations from equilibrium only, which is the best that one can

expect of a thermodynamic theory.
2.2. VOLUME FLUCTUATIONS OF A VAN DER WAALS GAS

As an example of the above analysis, we consider the volume
fluctuations of a gas at the liquid-vapor critical point, using a

van der Waals model. Levich(l7) shows that in this case

AW = POAV + AF, (2.15)

where P0 is the equilibrium pressure of the reservoir. Expanding

AF gives
2 2
OF A°F\ (AV)
AW = P AV + (22) AV +
0 (a )'r <;2’>T 2
3 3 2 4
3°F\ (AV) 3°F\ (AV)
3 <av3> . +(3V ) = : e
T T

where AV = V-V0 is the deviation from the equilibrium volume.

Usually, only two terms are of (2.16) are used. If we set
oF = 9
-(—W)T P = PO' we find

10
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kT

A
E((AV) ) = ml—- . (2.17)

The value of E (AV)2 becomes infinite at T=Tc. The cause of the
divergence is purely mathematical: only two terms of the expansion

were used. At the critical temperature(l7)

2 3
5P _ [s°p & 2°p
<SV>T % (av2> it (av§) £ (s
C s T
Then (2.16) becomes
3 4
o R L. s ). K (2.19)
o) 24
T

Equation (2.19) is general. We now specialize to a van der Waals

gas, for which

RT

P=c— -

a
= - &, (2.20)
V-b T 2

The conditions (2.18) lead to the following values of the critical

parameters:




ST "'W

Then
53p _ .0123457a
N eth . (2.22)
a3 b>
T
C
Then we obtain
(AV)A (AV) = ¢ ex AN a(Av) (2.23)
¥ P 24T ’ .

where ¢ is the normalization constant. Hence we obtain

E ((av)?)

kT \1/2 < 4
= ( Yc) : (2.24)

Thus, the van der Waals theory (i.e. the classical theory, see

1/2
"

of calculations of E((AV)z) for a number of gases. The above

below) predicts E((AV)Z) « T In Table 1, we give the results

theory yields values of E((Av)z) which are large, but not infinite.
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The thermodynamic theory presented in this section is a
"classical" theory(19) and thus will not predict the "correct"
critical exponents. This is a fault of the use of thermodynamic
theory per se. It is not clear how the thermodynamic theory given
above could be modified to yield the correct exponents.In a recent
work Mou et. al. (34), using the master equation, also derived

the classical result.

TABLE 1

VOLUME FLUCTUATIONS AT THE CRITICAL POINT

R V_(ce/mole) * E @AV)Z)/VC
He 87,6 4.416x10°
H, 65.0 4.336x102
N, 90.0 4.832x102
co 90.0 5.060x10>
o, 74.4 4.702x102
C,H, 127.5 5.168x10°
co, 95.7 5.147x10°
NH, 72.4 6.780x102
H,0 45 1.187x10°

*from (20, page 18)

13
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SECTION 3. STOCHASTIC KINETIC EQUATIONS, DIFFUSION

APPROXIMATION AND FOKKER-PLANCK EQUATION

The thermodynamic theory of §2 can not be used to treat
highly nonequilibrium kinetic phenomena, which are of interest in
many areas of chemistry, physics and biology. Let %(t) denote the
statistical variables. Often we can postulate an equation for the

mean value of x(t), x(t):

d—t—=b1(x,a) xT (0) = x, i=1,...,n

; a = {al, e am}. (31)

In order to treat fluctuations, we need to know the kinetic equa-
tion that %(t) satisfies. Ideally, we would start with the

i Liouville equation and derive the kinetic equation. Such a deriva-
tion is possible for only the'simplest system(33). Instead, we
shall use a generalization of the Langevin method. We will add

a zero-mean stochastic term to (3.1). The stochastic function

Q(T) is characterized by a microscopic time scale, T, small com-

pared to the macroscopic scale on which measurements are made.

Hence




where n is a small parameter. We will not assume that Q has a

§-correlation function and let

Ykl = fw E<Q‘k(s)iyl(o)) ds.

0

We assume that Q(t) = gn(t) satifies the stochastic kinetic

equation
dxi i Ve i, (9] 2
TR = b G + X fj(xn)SY (t/n%) . (3.3)

In equation (3.3), € is a small parameter characterizing the size
of the system and related to the intensity of the fluctuations
(1,2,13,15). Hence e€+0 corresponds to the thermodynamic limit.

The field f%(x) is a given deterministic field. 1Ideally, one

would like to calculate f§ from basic principles. Since (3.3) is
somewhat ad-hoc, a prescription is needed for the calculation of
f%. (One such prescription is the fluctuation-description theorem.
Another is given by Keizer(22)). As n-+0, xn(t) + x(t), a diffusion

process (22). We set

ata) = B {u,(¥(0) [X(0) = x} . (3.4)
Then u(x) satisfies

ou _ eaij 82u + bi m. .- i 98 . L (3.5)

e s Bt Bt Sl -

axiaxJ X ax

4




In (3.5), we use the convention that repeated indices are summed

from 1 to n and

1k

PR e
el i el B (3.6)

g Ll gl (3.7)
ox

On the other hand, if Q has a §-correlation function (white noise),

then we obtain

@l P .

du = €a 9 u i 9du

-— - -+ b — (3.8)
ot 2 axlaxJ X

Numerical work(3) indicates that if the boundaries are non-singular,
then equation (3.5) and (3.8) yield equivalent solutions for e<.l.

We also note that equation (3.3) is a stochastic equation
with correlations and hence is a more reasonable representation
then a white noise equation. Furthermore, equation (3.5) [or (3.8)]
is derived rigorously--no expansion procedure is needed (compare(ll)).
Equation (3.8) is the backward equation. Usually, in the physical
literature the forward or Fokker-Planck equation is used. This
equation can not be derived rigorously ' . No expansion procedure
will rigorously give the Fokker-Planck equation(l,1l). 1Instead,

we will obtain the Fokker-Planck equation by using the theory of

16
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1

partial differential equations. 1In (24, 25) it is shown now this

can be achieved. Let
vix,t)dx = Pr{xi*(t)§x+dx} 4 (3.9)

Then v(x,t) satifies (at least weakly) the adjoint equation

¥, & L* v = %(aijv)ij - (biv)i - e(civ)i. (3.10)

In the derivation of (3.10), there is a question of boundary terms
for u, v as |x|+=(25). For the problems considered here these
questions are relatively unimportant. In (3.10) subscripts in-

dicate differentiation.

17
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SECTION 4. CANONICAL DENSITIES

In this section, we consider the time independent, one

dimensional Fokker~-Planck equation

(aV)xx
E-—z—— - (bV)x =0 (4-1)
subject to
f v(s)ds = 1 ]!.ml\ v(s) = 0. (4.2)
- 00 S | >

The solution of (4.1,2) gives the steady state (but not necessarily
equilibrium) density for a process satisfying (3.3). Our results
are valid for €+0 ("thermodynamic limit") and generalize the
thermodynamic results of §2. In later sections, we generalize the
solutions obtained here to solve time dependent, multidimensional

problems.

When (4.1) is integrated twice and (4.2) is applied, we find

X
v(ix) = k [exp {f -2% ds}] ¥ (4.3)

where k is the normalization constant

o x
kaf exp{f %ds}dx.‘ ) (4.4)




it v

)
£
§
&

The main contribution to (4.3) comes from the maximum of the

function

X
8 (x) =f 2b g4s. ' (4.5)

a

We now assume that there is a steady state (i.e. b(x)=0 has a

solution) , x The steady state is classified according to its

0
dynamic behavior.

The normal type steady state X is characterized by

b(xo) =0, b'(xo) #0. (4.6)

We are interested in stable steady states, so that we assume

b'(xo) < 0. Thus, perturbations from X, decay exponentially.
When ¢(x) is expanded about Xyr we obtain:
-Ib'(ko)l(x-xo)2
v(x) v k |exp Ea(xo)
-Ib'(xo)l(x-xo)z
+ O exp Ea(xof . (4.7)

Thus, we obtain a locally Gaussian density, for small ¢. This

result has also been derived by Kubo et. al.(l) and Keizer(23) by

different arguments. It is the standard result in the theory of

nonequilibrium thermodynamics (18).

19
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In the marginal case, b depends on one parameter o such

that when a = o, the marginal type steady state satisfies

= ] = "
b(xo,ac) 0 b (xo.ac) 0 b fxo,ac) #0. (4.8)
The canonical dynamics corresponding to the marginal case are (4)

; =X - Q. (4.9)

The flow of such dynamics is sketched in Fig. 1. We need to re-
place the conditions (4.2) by:

Xp ,
lim v(s) = 0, ~/ v(s)ds = 1 (4.10)

S>=00 .
- 00

where Xp < © is an end value for x (see also 3).
Since b'(xo,ac) = 0, the expansion used to obtain (4.7) breaks
down. Hence the Gaussian density breaks down. In particular,

from (4.7) we have

E(x?) = 1/|b' (x,,al. (4.11)

Thus, when a = a the Gaussian density yields an infinite
variance. This is, of course, a purely mathematical divergence

and has nothing to do with the physical problem. We take an extra

term in the expansion of ¢(x,a) to obtain




sl b'(xo,a)(x-xo)2 b"(xo,a)(x—x0)3
- v(x) v k exp Sy + 3e3 . (4.12)
0

A change of variables converts (4.12) to the Airy density (2.11).

The critical type steady state is characterized by two

parameters, o,f such that when a = a, and B = Bc

b(xolaclsc) = b'(xouuch) = b"(xopac,Bc) =0
b"'(xo,ac,Bc) # 0. (4.13)

The canonical dynamics of a critical type dynamical system are (4)

X = tx3 + ax + B. (4.14)
In this case M Bc = 0. The flow of (4.14) is skeched in
Fig. L. ‘

It is clear that the Airy and Gaussian densities both break
down when o = a, and B = Bc' In this case, we take one more term
in the Taylor expansion of ¢(x) and obtain the Pearcy density (2.14).
The results of this section can be obtained by direct use of
v Levinson's theorem(26). It is clear that :he Gaussion approximation

will be valid whenever |b'(xo,a)/b“(x0,a)|>>1,

: ' 21
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A) THE MARGINAL TYPE DYNAMICAL SYSTEM HAS TWO STEADY
STATES WHEN A PARAMETER a > 0, ONE DEGENERATE STEADY
STATE WHEN o = 0 AND NO STEADY STATES WHEN a < 0.

B) THE CRITICAL TYPE DYNAMICAL SYSTEM HAS THREE
STEADY STATES WHEN o > 0, B > 0, ONE DEGENERATE
STEADY STATE WHEN o = 8 = 0 AND ONE STEADY STATE
WHEN o > 0, B > 0.
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% . ' SECTION 5.
f TIME DEPENDENT, MULTIDIMENSIONAL FOKKER-PLANCK EQUATION

In this section, we construct regular solutions of the time
dependent Fokker-Planck egquation (3.5). Since Ludwig(5) has given
the construction for the normal case, we only consider marginal
and critical type steady states. Our goal is to construct densities
that have finite second moments. Exact definitions of marginal
and critical type steady states in multidimensional systems are

given in Appendix A.

5.1. MARGINAL TYPE STEADY STATE

We seek a solution of (3.5) of the form

3
v(x,t) = exp [ %l (!lﬁéEl_.- b W(x,t))] 2: 2" (x,t) .
¥ n=_C

{5.1)

The form of (5.1) is a "ray ansatz"(27). In it, ¥(x,t), a, and
the functions zo(x,t),zl(x,t)... are to be determined. 1In practice
we are often interested in just the first term of (5.l1). After
derivatives are evaluated, terms are collected according to powers

of €. We obtain

23
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§:
P
Z
z

o
]

3 ;
1 ¥ N i
exp [--E- (-3—— - oz\l‘)] /€ {‘l‘t + Db ¥y

ij 3 o
+ (o - wz)'éi— wiwj} 22(% - ¥%) + exp [}%(;- -AEWJ {b}jzo

: o iy,
U SR T SPLAE Vi R wz)wizO (5.2)

@ s (8 -vy v, .4

z, + alJ (—2‘P‘l‘i\l’jz i3

t

n 2 0 i~ 2 0
+ 2(a - ¥ )wjzi) cTla - Y)Yz )}

3
+ 0 (e exp [—%(\;— - &"l‘)])

The leadinglcoefficient of e vanishes if

F n 2 .
i A e I =
wt + b ¥ e el wiwj 0 (5.3)

Equation (5.3) is a generalized eikonal equation(3). 1In the rest
of this paper, we shall assume that the initial data for v are

concentrated at a point

v(x,0) = §(x - xo) (5.4)

At the deterministic steady states, N,Q (see Fig. 2) we expect

that dy/dt = ¥,_ + blwi = 0. We set Wz = o at those points. The

t




>0 X o =0 8

- ‘ o <0

FIG. 2: A TWO DIMENSIONAL MARGINAL DYNAMICAL SYSTEM IN A DOMAIN D

IN Rz. WHEN a < 0 THE DETERMINISTIC FLOW IS ALWAYS ACROSS
D, A PROBLEM FIRST STUDIED BY LEVINSON(28)
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node N should correspond to a local maximum for v(x,t). Hence
we set Y(N) =\/3—. Similar reasoning leads to ¥Y(Q) = -\/E

The value of o is still undertermined. It can be obtained -
by the following iterative procedure(3). .(If higher order terms
are to be considered, then it is necessary to expand

o = Z ek&'k. In that case, all of the parameters are determined
k=0

in a manner analogous to the determination of &') . We start at

the node N, where V¥ =v&'° , the first estimate for a. Equation (5.3)

can be solved by the method of characteristics(12).The characteristic
equations are:
dt

=1 (5.5a)
g a5 (& - PPyp.add (5.5b)
ds J

L AR T U R

T *h " 5(0, - ¥9a pipj (5.5c)
g:_k 3 _<2pk(_\yaijpipj) % b%kpi i _(2_;_‘*12_) a:}gpipj> . (5.5Q)

Initial data is given on an ellipsoid surrounding N. As x+Q, the
value of o should approach - \/'&'_0 . If it does not, then a new

estimate '&'(1) is needed. Elsewhere, we have shown that iterates
of & can be determined by using the method of false position and

that a is a regular function of the deterministic parameter a(3).
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Whén N and Q coalesce (Fig. 2b), a = 0. After the annihilation

of N,Q (Fig. 2c), d < 0. The stochastic problem for a dynamical
system similar to Fig. 2c is an old one, solved by Levinson(28)
and Ventcel and Friedlin(29). Consequently, we restrict ourselves
to the dynamic cases represented by Figs. 2a,b.

From (5.5b), we see that if ?2 = o on a trajectory, then
dxi/ds = bi, so that the trajectory is a deterministic trajectory.
In this way, we will be able to estimate deviations from a given
deterministic trajectory. When (5.3) is differentiated with

respect to xk and evaluated on a trajectory we find:

de

dt

Y Jé‘a”wiijk =0 (5.6)

+ b
In (5.6) the (=) sign corresponds to trajectories that enter N,
the (+) sign to trajectories that enter Q. At either of the steady

states, we obtain
bl v -J&raijwww -0 (5.7)
'k * ijk i

Equation (5.7) can be solved to yield values of ¥, at N or Q.

k
When N and Q coalesce, so that o = 0 and conditions (A) hold,

it is possible to show that the Wk can be calculated. For example,
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consider the case of only one spatial dimension. Then (5.7)

becomes:
b, - ¥(N)a¥? = 0 (5.8)
% X i
or
b
2 34 'x
i
In obtaining (5.8,9), we have replacedv’&' by Y(N). When N,Q
coalesce, bx+0 and Y(N)+0. One application of 1'Hospital's
rule gives
(N)
3 o hagse
Wx(N) e | gl (5.10)

A similar, but more complicated, calculation holds in the multi-
dimensional cases(3).

Thus far, we have given our construction without any boundary
conditions. 1In order to determine zo, we need to specify the

boundary conditions. As time progresses, the process will tend to

concentrate (if it is still in D) near DI' (Fig. 2).
1 W3 1
The 0\exp 5(3_ - a¥))lterm in (5.2) yields a "transport"
equation for 20(25, 27). It takes the form
dzo 0 et
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0 0 . : :
2 (s) =z (o)exp[;.[ f(s')ds] (5.11a)

When the initial data is concentrated at a point, Ludwig has shown

that the appropriate initial data for z is z°(0) = constant.
5.2. CRITICAL TYPE STEADY STATE

For the critical type steady state, instead of (5.1), we

seek a solution of (3.5) of the form

N2
vi(x,t) = exp -1 (1 gt . B %W enzn(x,t). (5.12)
e \4 2

n=0

In this case, it is possible to impose the conditions on v(x,t) that
s+
v+0 as |x|-+w, f vik,.t)dx = 1 {S.13)
- 00

and take all of R" as the domain of interest. Instead of (5.3),

we obtain

i aij 3 v

The value of ¥ at the deterministic nodes Nl,N2 and saddle Q
(Fig. 3) is determined in a manner analogous to the one used in

§5.1. The values of the parameters are also determined in a
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§ similar fashion. It is possible to show that all constructions
i remain regular as the steady states coalesce(3). The function
§ zo(x,t). can also be determined in manner analogous to the previous
y case.
;
5
{
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FIG. 3: A TWO DIMENSIONAL CRITICAi: TYPE DYNAMICAL SYSTEM
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SECTION 6. CORRELATION FUNCTIONS FOR CRITICAL TYPE SYSTEMS

In many physical problems, the object of interest is the

correlation function

R(1) = E {%(t) X(t + r)} : (6.1)

1 1l

+ dxl)}dxdx E

[ rxxlpr {Q(t)e(x,x + ax), 2t + t)ext,x

Since the process in our problem is assumed to be stationary,

R(t) = E {Q(O)Q(T)} . Now we consider the conditional correlation
function:

Ry (0 = B {¥(0%() %0 = x,} (6.2)
If vo(xo)dx0 the initial density for Xq then we clearly have

R(T) = foo(T)Vo(xo)dxo. (6.3)
However,

Rxo(T) =/ x'Pr {;(T)E(xl,xl + dx1)|;(0) = xo} ax’

=/ xl v, (xl,T)dxl, (6.4)

0




where vx (xl,'r)dx1 was calculated in the previous section. Thus

0
1 4 oy 2
. 1 T f¥¢x ,1) )_ L
BXO(T) = [ X~ exp [_E \ 4' > %W z(x,T)]|dx '
x(0) = X
Namely, we start the ray calculation at x = X, and integrate the
ray equations
at gx i .3 44
- = o bR +
as 1 = b ™+¥~a Py (6.0)
k dp i i :
af SR L ast] i
das _ Pk ds ds (3a”-pypiP) + b P,
ij
3 a:k
+ V¥ ——z——pipj), (6.7)

until s = 1. Thus (6.5) can be evaluated. The full correlation

function, obtained from (6.4) is

1 .4 N2
R(t) = [/ %1 exp [-% (W(xar) - a;
x(0) = xo

In the next section, we give an example of such a calculation.
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SECTION 7. CRITICAL HARMONIC OSCILLATOR

In this section, we consider a modified Duffing oscillator(30)
in contact with a heat bath(13,31). We shall use a stochastic
equation of the standard "mode-mode" form, but initially will
indicate how a more general analysis would proceed.

The Hamiltonian of the system is

2
2 4 2 |53
_k(n)x ax P i
e siatilne aucs R R e il R (7.1)
In - G713y Qint (g ,X) is the interaction potential of the oscillator

with coordinates (x,p) and heat bath with coordinates (rl,pi). The
last term represents the kinetic energy of the heat bath. The

motion at the full system (oscillator + heat bath) is generated by

 _ OH o H
X = 'ﬁ' P = 3% {72.2)
b | oH s JdH
r = p: = -——r 2=y e N
api i apt

The motion of the entire system occurs on a manifold in the phase
space given by H = E, where E is the initial (i.e. constant) energy
of the system. This manifold, M, will be bounded and compact.

We . expect that the full system is ergodic(32). We are

interested in a submanifold of M, Ml, which is the manifold of

34




(x,p) coordinates. A possible projection operator from M to Ml

]{Iplr' LR r ’ p ’ 8¢ p }‘Iplo' el ’ 0 ¥

Namely, we "project" from M+M1. On Ml, we assume that the follow-

ing measure exists
P(t,x,p,A) = Pr {(Q(t).ﬁ'(tiéAIQ(O)e(x,x
+ dx), E(O)G(P:P + dp)}. (7.4)

N
We have introduced x(t), g(t) as random variables. This is a

result of the elimination of ({ 'R ) from consideration. By

averaging, we are treating the latter variables as random; thus
X,p become random variables

AN
Next, we assume that if Qﬁt) = x, p(t) = p, then

lim /th f(?? - x) P (t + At,x,p,dx,dp) = p/m (7.5)
At~>0

: 1 v 5
lim iE f(p -~ p) P (t + At,x,p,dx,dp) =
At~>0

3
“k(n)x - ax™ - y(x)p (7.6)

: 1 N 2 —

lim At (p - pP) P Lt * At,x,p,dx,dp) = ga, (7.7)

At~+0




A AP 4

and that all other moments are zero. These assumptions have yet
to be verified for any but the simplest system(33). These assump-

tions lead to the Langevin equations

p/m (7.8)

X e
il

. 3 3 ay
p=-k(n)x - ax™ - yx~ + Vea 3t (7.9)

where ;(t) is an approximation to Gaussian white noise (e.g.(22),
page 651).

The Fokker-Planck equation for the density f(t,x,p) is

3
capf - b £ - ((-k (M x - ax’ - YP)£), = £, (7.10)

where (see §3)
o =f E(?z(s)?z(m)ds. (7.11)
0

The equilibrium density is (6-1 = kT)

2 4
- P ax
feq —.exp [-B<fﬁ = k(n)ix + —E_)] 7 (7 vi2)

We require that feq be a solution of (7.10) and obtain (the

"fluctuation-dissipation" result):

cap = %L 2KTY. e (7.12)
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The steady states of the averaged equations (7,8,9) are

p =0 x =0, ii{lk(n)l& é (7.14)

where we have made the assumptidn that k > 0, a > 0.

We assume that when n = Ner k(nc) = 0. Then (0,0) is a critical

type steady state. At n = Ngr we have a critical harmonic

oscillator.

We now nondimensionalize (7.9). We let € = %2 <<l be a
0
small parameter, where EO is some reference energy. Introducing

dimensionless variables by

- e |
o 0 1 i Om ' e mt'
W= m— ~ N = JT X t = 7— I (7-15) |
¥ 0 %
|
Y ' Y4
k = k o = y(x) = y'(x")y
JE™ (Eqm) 372 L

equation (7.9) becomes (with v = p/m)

£, = Ey'€

tl vIv! = (V'f)xl

“(xrxt -atxnoyrere),, (7.16)
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In the sequel, we drop the primes in (7.16). Since k' « k, when
= ' =
n nc, k (nc) 0.
We now seek a solution of (7.16) of the form

! ; _
s £0e,%,7) = exp [-% (%w4 % 9%— % BW)]:E:enzn(x,t) (7.17)

- -

where ¥,a,B and z" are to be determined. Following the procedure

in §5, we obtain

¥+ Ve - (k(n)x + ax> & yv) v

t v

+ ¥ (¥ - av - g2 = 0. (7.18)

Let us now specialize to n = Ner k = 0; i.e. the critical

0 in (7.17)and (7.18). The

harmonic oscillator. Then a = R

ray equations become

ax - L ERGERTEG: 3
EE_V - ax W+2Y‘!’v‘l’
gy dav
| a " Vet @ Tt Y
: . (7.19)
day
X _ 2.2 vy 2
% " GWXWVW - 3ax VV
; ay
Y o cvded o
a-t—— G\PV\V \yx+'Y‘l’v
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By integrating the ray equations from an initial point x(to) = Xy
v(to) = VO’ we obtain the conditional density f(x,t,V,xo,Vo). Then
; following the procedure in §6, we can obtain the correlation

- function. Our solution thus allows the calculation of correlation

é functions at critical points. Once the correlation function is
¥ known, we obtain the spectrum of the oscillator by Fourier
: transform.
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APPENDIX A
MARGINAL AND CRITICAL TYPE DYNAMICAL SYSTEMS

In this appendix, we give exact conditions for marginal and
critical type dynamical systems. Our work generalizes the scheme

of Kubo et. al. (1973).
MARGINAL TYPE DYNAMICAL SYSTEMS

The deterministic evolution of the macrovariables is

governed by
x = b(x,n) (A.1)

where n Rl is a parameter. Equation (A.l) may have three steady
states, Qo(n), Ql(n) and P,. Let B be the matrix (bi,j)
evaluated at QO’ Q, or P, (k = 0,1,2). We assume that:

e For all values of n, B2 has two real negative eigenvalues.
Although P2 may depend upon n, P, is always bounded away from the
other steady states.

@ As n ¥ 0, the distance between Qo(n) and Ql(n) decrecases.
When n = 0, 2 and Q coalesce and annihilate each other (i.e.
when n < 0, (A.l) has one real and two complex steady states).

e When n > 0, B0 has two real negative eigenvalues and B1

has one real positive and one real negative eigenvalue. When

n=20, bo = B1 has one zero and one real negative eigenvalue. The

A-1
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eigenvector corresponding to the negative eigenvalue has positive

slope. The double point QO(O)/Ql(O) is called a saddle node (3).

A deterministic system satisfying the above assumptions will

be structurally similar to the system sketched in Fig. 2.
The above conditions can be reformulated by a change of

coordinates. Define the yl axis in the direction of the eigen-

vector of the non-negative eigenvalue of Bl' The y2 axis is in
the direction of the eigenvector of the negative eigenvalue of

Bl’ with the origin at Ql' Then
2 n
y = b(y,n) (A.2)

is the deterministic system in the new coordinates. The system is
of the marginal type if:

Vi o
1) det(b ,j(Ql,O)) =0

2 B 00,00 =5 %, 0,08 =0 (A.3)

Pl
3 B %5000 #0

N
4) b 1,11(01,0) e z,ll(Ql,O) £ 0.

The conditions (A.3) have the following interpretation. Condition

1) indicates that the original system has a zero eigenvalue.

Condition 2) indicates that when n = 0 the linear dynamics in the




T

S ———

y1 direction vanish, condition 4) indicates that these dynamics
are quadratic. Condition 3) indicates that the second eigenvalue

is non-zero.
CRITICAL TYPE DYNAMICAL SYSTEMS

The macrovariables evolve according to a deterministic

kinetic equation
x = b(x,n,8) (A.4)

where n, § are one dimensional parameters. The entire bifurcation
set of equation (A.4) is still unknown (3). The
physical systems of interest here motivéﬁéiﬁhe following
assumptions:

® For some values of n, §, (A.4) has three steady states

Po(n,é), Pl(n,é) and Pz(n,é).

i Bk = (bl,j) evaluated at Pk' then when
the three steady states are distinct, B0 and 82 have real negative
eigenvalues. B, has one real negative and one real positive

1
eigenvalue. The eigenvector corresponding to the negative eigen-

value has positive slope.
e As n, § vary, two of the steady states may coalesce and
annihilate each other. This behavior is analogous to the

marginal bifurcation.




e As n, 8§ vary, all three steady states may move together
and coalesce when n = 8§ = 0. At the critical bifurcation,
Bl = (b%j) has a zero eigenvalue. We assume that the steady
state remaining after the critical bifurcation is a stable steady

state. : g
. A deterministic system satisfying the above postulates will
be structurally similar to the one sketched in Fig. 3.
The above properties can be restated in terms of a new
coordinate system as follows. The yl axis is in the direction of

the eigenvector of the non negative eigenvalue of Bl' The y2

W

axis is in the direction of the eigenvector of the negative

eigenvalue, with the origin at Pl' The deterministic evolution

is then
. " .
Y = b(y'nré)- (A-S)

3 A dynamical system is a critical type system if:

T

1) det(ﬁl,j(Pl,o,O)) =0

N
2) g lpl(Pllolo) == b 2'1(Pl’0'0)

1 2

(47) n
= b Ill(PlIOIO) = b rll(Pllolo) - 0 (A-G)
3» 52,00 #0
vl N2
) b g3t P g ¥
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These conditions have the following interpretation 1) indicates
that the system has a zero eigenvalue, while condition 3) indicates
that the second eigenvalue is non-zero. Condition 2) indicates.
that the linear and quadratic dynamics in the y1 direction vanish,

while 4) indicates that the dynamics are cubic.
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